3.775 \(\int (d+e x)^m (f+g x)^{3/2} (a d e+(c d^2+a e^2) x+c d e x^2)^{-m} \, dx\)

Optimal. Leaf size=105 \[ \frac{2 (f+g x)^{5/2} (d+e x)^m \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{-m} \left (-\frac{g (a e+c d x)}{c d f-a e g}\right )^m \, _2F_1\left (\frac{5}{2},m;\frac{7}{2};\frac{c d (f+g x)}{c d f-a e g}\right )}{5 g} \]

[Out]

(2*(-((g*(a*e + c*d*x))/(c*d*f - a*e*g)))^m*(d + e*x)^m*(f + g*x)^(5/2)*Hypergeometric2F1[5/2, m, 7/2, (c*d*(f
 + g*x))/(c*d*f - a*e*g)])/(5*g*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m)

________________________________________________________________________________________

Rubi [A]  time = 0.080604, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {891, 70, 69} \[ \frac{2 (f+g x)^{5/2} (d+e x)^m \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{-m} \left (-\frac{g (a e+c d x)}{c d f-a e g}\right )^m \, _2F_1\left (\frac{5}{2},m;\frac{7}{2};\frac{c d (f+g x)}{c d f-a e g}\right )}{5 g} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^m*(f + g*x)^(3/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m,x]

[Out]

(2*(-((g*(a*e + c*d*x))/(c*d*f - a*e*g)))^m*(d + e*x)^m*(f + g*x)^(5/2)*Hypergeometric2F1[5/2, m, 7/2, (c*d*(f
 + g*x))/(c*d*f - a*e*g)])/(5*g*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m)

Rule 891

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int (d+e x)^m (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m} \, dx &=\left ((a e+c d x)^m (d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m}\right ) \int (a e+c d x)^{-m} (f+g x)^{3/2} \, dx\\ &=\left (\left (\frac{g (a e+c d x)}{-c d f+a e g}\right )^m (d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m}\right ) \int (f+g x)^{3/2} \left (-\frac{a e g}{c d f-a e g}-\frac{c d g x}{c d f-a e g}\right )^{-m} \, dx\\ &=\frac{2 \left (-\frac{g (a e+c d x)}{c d f-a e g}\right )^m (d+e x)^m (f+g x)^{5/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{-m} \, _2F_1\left (\frac{5}{2},m;\frac{7}{2};\frac{c d (f+g x)}{c d f-a e g}\right )}{5 g}\\ \end{align*}

Mathematica [A]  time = 0.058219, size = 93, normalized size = 0.89 \[ \frac{2 (f+g x)^{5/2} (d+e x)^m ((d+e x) (a e+c d x))^{-m} \left (\frac{g (a e+c d x)}{a e g-c d f}\right )^m \, _2F_1\left (\frac{5}{2},m;\frac{7}{2};\frac{c d (f+g x)}{c d f-a e g}\right )}{5 g} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^m*(f + g*x)^(3/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^m,x]

[Out]

(2*((g*(a*e + c*d*x))/(-(c*d*f) + a*e*g))^m*(d + e*x)^m*(f + g*x)^(5/2)*Hypergeometric2F1[5/2, m, 7/2, (c*d*(f
 + g*x))/(c*d*f - a*e*g)])/(5*g*((a*e + c*d*x)*(d + e*x))^m)

________________________________________________________________________________________

Maple [F]  time = 1.638, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex+d \right ) ^{m}}{ \left ( ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2} \right ) ^{m}} \left ( gx+f \right ) ^{{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m*(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x)

[Out]

int((e*x+d)^m*(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (g x + f\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{m}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{m}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x, algorithm="maxima")

[Out]

integrate((g*x + f)^(3/2)*(e*x + d)^m/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (g x + f\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{m}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{m}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x, algorithm="fricas")

[Out]

integral((g*x + f)^(3/2)*(e*x + d)^m/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^m, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m*(g*x+f)**(3/2)/((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**m),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (g x + f\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{m}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{m}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(g*x+f)^(3/2)/((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^m),x, algorithm="giac")

[Out]

integrate((g*x + f)^(3/2)*(e*x + d)^m/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^m, x)